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A B S T R A C T   

Many studies have examined the diffusion of health care innovation but less is known about the diffusion of 
health care fraud. In this paper, we consider the diffusion of potentially fraudulent Medicare home health care 
billing in the United States during 2002–16, with a focus on the 21 hospital referral regions (HRRs) covered by 
local Department of Justice (DOJ) anti-fraud “strike force” offices. We hypothesize that patient-sharing across 
home health care agencies (HHAs) provides a mechanism for the rapid diffusion of fraudulent strategies. We 
measure such activity using a novel bipartite mixture (or BMIX) network index, which captures patient sharing 
across multiple agencies and thus conveys more information about the diffusion process than conventional 
unipartite network measures. Using a complete population of fee-for-service Medicare claims data, we first find a 
remarkable increase in home health care activity between 2002 and 2009 in many regions targeted by the DOJ; 
average billing per Medicare enrollee in McAllen TX and Miami increased by $2127 and $2422 compared to just 
an average $289 increase in other HRRs not targeted by the DOJ. Second, we establish that the HRR-level BMIX 
(but not other network measures) was a strong predictor of above-average home health care expenditures across 
HRRs. Third, within HRRs, agencies sharing more patients with other agencies were predicted to increase billing. 
Finally, the initial 2002 BMIX index was a strong predictor of subsequent changes in HRR-level home health 
billing during 2002–9. These results highlight the importance of bipartite network structure in diffusion and in 
infection and contagion models more generally.   

1. Introduction 

Since the landmark study by James Coleman et al. (1966) of tetra
cycline, there has been interest in understanding how new medical 
technologies diffuse, and especially why they appear to exhibit such 
pronounced geographic patterns. Less well understood, however, is the 
process by which new fraudulent innovations diffuse through networks 
over time and across regions. Several studies have focused on the in
centives for expanded (or reduced) Medicare fraud (Silverman and 
Skinner, 2004; Dafny, 2005; Leder-Luis, 2020; Eliason et al., 2021), 
which has been estimated to account for 8% of Medicare expenditures, 
or $52 billion in 2017 (GAO, 2017). These studies, however, did not 
consider the potential role of networks in the diffusion process. Given 
the importance of networks in the dissemination of investment fraud 
(Baker, 2003; Nash et al., 2013), we hypothesize that networks play a 
key role in the rapid diffusion during the 2000s of a major source of 
Medicare fraud, home health care expenditures. 

In the aggregate, there was substantial growth in Medicare expen
ditures for home health care services, with a more than doubling of 
expenditures over just 7 years – from $14.9 billion in 2002 to $33.7 
billion in 2009 (in 2016 dollars). However, the increase in expenditures 
was highly concentrated in just a few regions of the U.S. For example, in 
the Miami Hospital Referral Region (HRR), home health expenditures 
rose 302% from $802 in 2002 to $3229 in 2009 per Medicare enrollee 
(in 2016 dollars; averaging over all fee-for-service Medicare enrollees, 
not just those receiving home health services). By contrast, in Los 
Angeles, home health billing (used interchangeably with expenditures) 
barely budged, from $782 in 2002 to $861 in 2009, a 10 percent in
crease. Largely in response to the rapid growth of home health billing in 
Miami, the Department of Justice (DOJ) together with the Department 
of Health and Human Services (HHS) opened a local Southern Florida 
strike force to prosecute Medicare fraud in 2007; given its success the 
program was expanded to 8 other locations by fiscal year 2016. 

In a pioneering study, Glaeser et al. (1996) suggested that the wide 
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regional variation in financial crime was consistent with a model of peer 
effects, in which fraudulent financial strategies spread rapidly by 
learning from criminals who live nearby. The observed geographical 
variation in home health care expenditures is consistent with this 
approach; because Home Health Agencies (HHAs) are distinct organi
zations, our study of the spread of extreme Medicare billing from HHA to 
HHA is an organizational-level study of the dark side of social capital 
(Villalonga-Olives and Kawachi, 2017). However, regional variations in 
health care are also likely associated with other explanations, including 
regional differences in underlying health (Wolf and Schoomaker, 2019; 
Chetty et al., 2016), physician beliefs and patient demand (Cutler et al., 
2019), peer effects associated with the quality of clinical care (Weng 
et al., 2020), or variations across regions in social capital and physician 
professionalism (Skinner, 2011). 

To better understand the remarkable growth of Medicare fraud 
during the 2000s in just a few regions of the U.S., we focus on the 
network structure of HHAs. We build on an economic model of criminal 
behavior (Becker; 1968; Sah, 1991) in which the extent of fraud depends 
on perceived profits and legal penalties, for example the introduction of 
criminal and civil legal proceedings against agency owners and physi
cians (Leder-Luis, 2020), or the imposition of pre-authorization policies 
and coverage denials (Eliason et al., 2021; Howard and Desai, 2020). We 
expand on these models, however, to hypothesize that patient-sharing 
networks across home health agencies are central to the diffusion of 
fraud. 

To capture the potential speed and extent of diffusion, we develop a 
new bipartite mixture measure, the BMIX index, that captures the idea 
that a few patients shared across three, four, or more health agencies 
would more rapidly speed the diffusion of potentially fraudulent billing 
strategies than a network structure with a greater number of patients 
shared between just two agencies. By contrast, conventional network 
measures such as density, transitivity, and betweenness-centrality are 
unipartite measures that do not directly capture the importance of these 
bipartite relationships. As a measure of “infection,” the bipartite BMIX 
index could also find applications in other analyses of networks; for 
example, in nursing homes networks of homes based on employees that 
are contracted by multiple of them, the travelling between them by such 
employees may be associated with the diffusion of COVID-19 outbreaks 
during the early days of the pandemic (Chen et al., 2020). 

For background, we next describe the historical growth (and subse
quent decline) in home health expenditures from 2002 to 2016 and then 
develop a theoretical framework to explain these changes and motivate 
the bipartite BMIX index, which is to our knowledge a new network 
index. 

1.1. Spatiotemporal patterns of medicare home health care expenditures 

The Medicare federal insurance program for people aged 65 and 
older in the U.S. Medicare provides home health care benefits for pa
tients who are homebound, require skilled nursing, or occupational and 
physical therapy. Qualified patients receive care by a HHA under the 
direction of a physician who must sign off on treatment plans. Allega
tions of improper billing for home health services are often brought 
under the False Claims Act, under the federal anti-kickback provisions, 
or under civil penalties (Imperato, 2017). Often a “whistleblower” will 
be involved who provides key evidence regarding the alleged fraud in 
return for a share of what the government recovers (Leder-Luis, 2020). 

Home health fraud. We define fraud as either knowingly billing for 
services with no benefit for (or even harm to) patients, or billing for 
services not provided. Only a fraction of fraudulent behavior is brought 
to trial, and innocent providers could also be falsely accused; thus true 
fraud is very difficult to measure. Instead, we proxy for fraud in a 
probabilistic sense by using “outlier” expenditure rates for otherwise 
similar patients that we interpret as reflecting a heightened probability 
of fraud, an approach that has been used in other studies to detect fraud 
(Shekhar et al., 2022). For example, one algorithm relying on outliers 

identified 17 potentially fraudulent dental providers, of which 12 (71%) 
were recommended by auditors for further investigation (van Capel
leveen et al., 2016). At the regional level, we use a different proxy for 
high rates of fraudulent activity: the presence of a local “strike-force” 
office of the DOJ and HHS devoted to detecting and prosecuting fraud, 
described below. 

How does home health care fraud take place? It’s difficult to 
generalize, but there are common patterns of fraudulent behavior, 
which includes agency owners providing home health services to 
Medicare beneficiaries which were not medically necessary and often 
were never provided. These efforts included kickbacks to physicians, 
patient recruiters and staffing groups to refer patients to their agency 
(HHS/DOJ, 2017, p. 21), or the sharing of patient IDs across networks of 
HHAs owned by organized criminal organizations (Meyers, 2017). (See 
Supplemental Appendix Section A.1 for more details.) 

Geographic variation in home health care expenditures 2002–16. Home 
health care expenditures per Medicare fee-for-service enrollee are 
derived from age-sex-race-adjusted measures in the Dartmouth Atlas 
from 2002 to 16 for 306 hospital referral regions (HRRs) (Dartmouth 
Atlas, 2021). The comparisons hold prices constant across regions using 
constant-price methods documented in Gottlieb et al. (2010). The 
measure therefore captures both the number (and reimbursement rate) 
of services per patient receiving home health care, and the fraction of the 
population receiving any services. All expenditure measures further 
adjust for (within-year) differences in age, sex, and race across regions, 
and are adjusted for inflation using the GDP deflator, expressed in 2016 
dollars. 

While there are 306 HRRs in the U.S., we focus on those with 
documented evidence of fraudulent behavior; regions in which by 2016 
the DOJ had located special strike forces on health care fraud. Following 
the first office opened in Southern Florida in 2007, by 2016, the DOJ had 
a total of 9 offices: “Los Angeles, California; Miami and Tampa, Florida; 
Chicago, Illinois; Brooklyn, New York; Detroit, Michigan; Southern 
Louisiana; and Dallas and Southern Texas” (HHS/DOJ, 2017, p. 10). 
Based on this description, along with a 2020 documentation of strike 
force activity that referred to a “Gulf Coast” office, we designated 21 
regions deemed subject to strike force interest (See Supplemental Ap
pendix Table A1 for a list of the strike force office locations and regions 
and Section A.2 for further discussion.). To provide visual clarity in our 
graphs, we focus on 9 of the larger regions. 

Fig. 1 shows the time-series of these 9 regions, plus a population- 
weighted average of the 285 HRRs not included in the geographical 
districts targeted by the DOJ; these are listed as “Other HRRs.” While the 
network analyses in this paper begin in 2002 when the 100% fee-for- 
service data became available, we show in Fig. 1 the Dartmouth Atlas 
data beginning in 2000 (with 20% samples) and running through 2016 
to demonstrate that 2002 appeared to be an inflection point. The first 
thing to note is that for “other” HRRs not explicitly targeted by the DOJ 
rates were generally low, although there was an increase from $404 in 
2002 to $693 in 2009; a large proportional increase (71%) but in dollar 
terms per enrollee ($289) a barely perceptible change relative to tar
geted regions. 

Second, the DOJ location of their local strike force offices were 
largely (but not exclusively) associated with very high rates of home 
health care expenditures. McAllen and Miami were roughly 6-times the 
average rates of the other HRRs, while Chicago, Dallas, and New 
Orleans, were roughly three times the rate; Detroit and Tampa were 
double. Another way to view the predictive value of the DOJ field offices 
is to note that among the 15 HRRs with the highest level of home health 
billing in either 2009 or 2010, 11 of them are in our designated targeted 
list of regions by the DOJ (Table A1); the remaining 4 are located in 
Texas and Louisiana within driving distance of strike-force HRRs. 

Third, as noted above, potentially fraudulent home health activity 
appears limited to one or two HRRs and are not characteristic of entire 
states. Harlingen, McAllen, and Dallas were all very high-billing HRRs in 
2009 and 2010, but other Texas HRRs such as El Paso and Temple were 
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much closer to the U.S. average. Similarly, Miami is an outlier even 
within Florida; the Fort Lauderdale HRR, adjacent to Miami, accounted 
for $1175 in 2009, barely one-third the corresponding level in Miami, 
and 2009 home health expenditures in the Tallahassee HRR, $451, was 
below the U.S. average. 

Fourth, there is a distinct rise and then decline in home health care 
expenditures, particularly for those targeted by the DOJ. The decline is 
likely to have been associated with two factors. The first is changes in 
policies enacted in response to potentially fraudulent activities, such as 
restrictions on outlier payments above the 60-day limit. Miami-Dade 
County accounted for nearly half of all U.S. home health outlier pay
ments in 2009 (Benzio, 2010), so that when CMS sharply restricted 
outlier payments in 2010 (Kim and Norton, 2015), there was a partic
ularly sharp decline in health care billing for the Miami HRR in 2010 
(Fig. 1). 

The other likely reason for the downturn is deterrence because of 
successful criminal and civil cases raising the perceived (and actual) 
probability of detection; Leder-Luis (2020) found that Qui Tam or 
“Whistleblower” provisions for Medicare and Medicaid fraud led to a 
$6.80 specific deterrence effect per dollar of settlement. 

A key feature of the expansion in home health care expenditures was 
an increase in the number of HHAs in areas identified by the DOJ. In 
Fig. 2, we show the number of HHAs in the 9 HRRs as a ratio of the 
original number of agencies in 2002. In some cases, the number of 
agencies declines, as for example in New Orleans which experienced a 
decline in population after Hurricane Katrina in 2005, while Manhat
tan’s number of agencies did not increase. But for 7 of the 9 regions the 
number of agencies grew rapidly, with a roughly 10-fold increase in 
Miami. We next posit a theoretical model that links network factors 
involving market structure to a rapid diffusion in health care fraud. 

1.2. Theoretical model: the role of patient referral networks 

Here we outline a theory to motivate the hypothesis that a bipartite 
(beneficiary-HHA) network feature predicts the diffusion of fraudulent 
billing; this model is described in more detail in Supplemental Appendix 
Section A.3 and in O’Malley et al. (2021). We assume three types of 
HHAs: (a) those maximizing net social benefits arising from patient 
treatment and care; (b) those maximizing legal profits rather than social 
benefits (sometimes termed supplier-induced demand), and (c) those 
willing to risk conviction, fines, and imprisonment to make larger profits 
(Becker, 1968). In the short-term, the quantity of services and total 

billing for agencies described by (a) and (b) are not likely to change 
absent a dramatic increase in patients needing home health care or a 
fundamental change in prices or home health care technology; we do not 
observe such shifts in the Medicare program during the period of anal
ysis. Indeed, for most regions in the U.S. we observe only gradual 
changes in utilization and billing, suggesting that in these regions, most 
agencies are types (a) and (b). 

However, the model predicts a rapid expansion of type (c) agencies 
through fraudulent billing and patient sharing when (1) agencies are 
reassured that other agencies are behaving with similar practices and 
haven’t been caught, (2) knowledge about how to bill fraudulently is 
discovered through informal networks, and where (3) the likelihood of 
one agency learning fraudulent strategies from another is a positive but 
diminishing function of the number of patients shared between the two 
agencies. This latter condition means that a single patient from a type (c) 
agency shared with multiple (say 5) agencies predicts greater market 
fraud than if 5 patients from the (c) agency were shared with just one 
other agency. Conditions (1)–(3) imply that a bipartite measure of pa
tient sharing would better distinguish between regions most amenable 
to the rapid diffusion of fraudulent activity, and those least amenable. 

Traditional network measures are typically unipartite, meaning that 
the unit of analysis is (in our case) the HHA, with all information about 
specific patients lost. By contrast, a bipartite network has two distinct 
sets: One is the set of HHAs, the second the set of patients, and we 
measure the links between each patient and each HHA; thus we know 
(for example) whether a patient was shared exclusively between two 
HHAs, or whether that patient was shared across a wide set of HHAs. 
Furthermore, a bipartite measure captures patients whose care is solely 
provided by a given HHA, information invisible for unipartite network 
measures based solely on observed edges between HHAs. In sum, this 
bipartite approach provides valuable insights about the extent to which 
information may be shared across HHAs that would otherwise be lost in 
a unipartite network measure. 

2. Methods and models 

In this section, we develop a bipartite measure of exposure to 
potentially fraudulent agencies, describe the development of the uni
partite regional networks and associated summary measures, describe 
the billing models involving the bipartite and unipartite network 

Fig. 1. Per-Enrollee Home Health Expenditures, 2000–2016, by Selected Re
gion 
Note: Selected regions from the 21 Department of Justice (DOJ) targeted HRRs 
as a location for (or area of interest of) their fraud strike forces. “Other” is the 
weighted average of the other 285 HRRs. All Expenditures in 2016 dollars. 

Fig. 2. The Number of Distinct Home Health Care Agencies (HHAs) Relative to 
2002, by Selected Region 
Note: Selected regions from the 21 DOJ-targeted HRRs as a location for (or area 
of interest of) their fraud strike forces. “Other” is the weighted average of the 
other 285 HRRs. All measures are relative to the initial number of HRRs in 
2002; thus New Orleans likely experienced a decline in the number of HHAs 
because of a decline in population after Hurricane Katrina in 2005. 
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measures, develop peer-effect models of diffusion in home health billing 
(or expenditures), and describe the empirical data and methodology for 
all analyses. 

2.1. The BMIX index 

Let Bhi be a binary variable that equals 1 if patient h = 1,…,H 
received services from agency i = 1,…, n within the year. In an undi
rected network, the bipartite mixture (BMIX) index for a region is 
defined as: 

BMIX =

∑n

i<k
Aik

∑n

i<k
Aik +

∑n

i=1
Si

(1)  

where Aik =
∑H

h=1BhiBhk is the number of instances when a patient re
ceives support from both agencies i and k within a year and Si =
∑H

h=1BhiI(
∑n

k∕=iBhk = 0) is the total number of patients that receive 
support from agency i alone (“single-source patients”), where I(event) =
1 if event is true and 0 otherwise. 

The index is a mix of a bipartite count of the number of single-source 
patients and a count of the number of pairwise instances of patients 
receiving services from multiple agencies. Unlike many unipartite 
measures, it is scale-free, thus making it useful in comparing markets of 
different sizes, and as we shall see, individual markets with rapid in
crease or decrease in the number of nodes (or agencies). In our appli
cation, the quadratic weighting of patients who receive services from 
multiple agencies and the use of the number of single-source patients 
(Si) will aid its predictive power. 

Further insight into the BMIX index arises by defining a patient 
attribute, denoted Nh for patient h, corresponding to the number of 
distinct agencies they received care from, Nh =

∑n
i=1Bhi. Denote the 

number of patients with attribute value z by dz =
∑N

h=1I(Nh = z). 

Because d1 =
∑n

i=1Si and 
∑n

i<kAik =
∑n

z=2

(
z
2

)

dz =
1
2
∑n

z=2z(z − 1)dz it 

follows that: 

BMIX =

∑n

z=2
wzdz

d1 +
∑n

z=2
wzdz

=

∑n

z=2
wzdz

∑n

z=1
wzdz

(2)  

where wz = 1 if z = 1 and wz = z(z − 1)/2 for z > 1; in general wz =

I(z = 1)+ z(z − 1)/2. 
The expression in (2) shows that the BMIX index can be viewed as a 

network statistic of the bipartite network with patients and agencies as 
the two distinct sets of nodes. The numerator and denominator are 
weighted averages of the frequency distribution of the number of 
agencies patients received care from, a degree measure for the patient 
nodes in the bipartite patient-agency network. The weight for z > 1, 
wz = z(z − 1)/2, equals the number of edges in the patient-sharing 
network contributed by a patient who encounters z agencies. As the 
number of their agency encounters increases, the impact a patient has on 
the BMIX index increases quadratically. 

We are not aware of BMIX having been previously developed in the 
network literature (although it is related to market overlap measures, as 
in Aryal et al., 2020). The weights wz are a mixture of patients that do 
(z > 1) and do not (z = 1) contribute to the network, making BMIX a 
combination of two forms of information. As noted in Section 1.2, 
knowledge of the number of patients shared between exactly two versus 
a wider set of agencies and the number of beneficiaries whose care is 
solely provided by a single agency is lost under the bipartite to unipartite 
projection. Low values of the BMIX index correspond to where patients 
remain with a single HHA for all their treatment, while larger values are 
consistent with jumps to multiple agencies, whether randomly or 

because of explicit coordination among interlocking HHAs; the BMIX 
might be thought of as measuring the energy, pressure or heat (e.g., 
enthalpy) in a market. 

To illustrate the calculation of BMIX, suppose that two HRRs each 
have 10 agencies, with 20 patients in total. In the first, 9 beneficiaries 
receive services from exactly 2 of the agencies and 11 receive services 
from just one agency. In the second, 19 patients receive services from 1 
agency and 1 patient receives services from all 10. The respective values 
of BMIX are: 

BMIX1 =
2(2 − 1)/2 × 9

2(2 − 1)/2 × 9 + 11
=

9
20

= 0.45  

BMIX2 =
10(10 − 1)/2 × 1

10(10 − 1)/2 × 1 + 19
=

45
64

= 0.70 

The same number of services were provided to the same number of 
beneficiaries but the BMIX of the HRRs is very different because a single 
patient can more effectively serve as a “super-spreader” of potentially 
fraudulent strategies across all 10 agencies. See Supplemental Appendix 
Section A.4 for another worked example and more discussion of the 
BMIX. 

The BMIX index takes values ranging from 0 to 1. Therefore, without 
scaling, a regression coefficient for BMIX is interpreted as a change in 
the expected value of the outcome if all beneficiaries receive care from 
two or more agencies (d1 = 0) compared to the counterfactual that all 
beneficiaries receive care from a single agency. 

2.2. Unipartite networks and measure development 

To determine whether the BMIX index contains information beyond 
that captured in standard network measures, we constructed a 
beneficiary-sharing network for each HRR in each year from which 
standard network measures could be computed. The nodes are the HHAs 
physically located in the HRR and the existence of an edge between two 
agencies indicates that at least one patient received care from both 
agencies during a calendar year; see Supplemental Appendix Section A.5 
for more details of the construction of these unipartite networks and the 
computation of the summary measures listed below. We also align the 
number of shared patients during the year with each such edge (the 
values of Aik in Equation (1)) for computing the BMIX for the HRR. 
Besides the BMIX index measure, we construct the following three uni
partite network measures by HRR and year chosen because they have a 
theoretical and empirical basis for predicting fraudulent activity (Aven, 
2015; Ferrara et al., 2014; O’Malley et al., 2021):  

1) Density, the fraction of potential connections or edges among nodes 
(or agencies).  

2) Betweenness centralization, a measure of heterogeneity in the extent 
that each agency intersects the information flow in the network.  

3) Transitivity, a measure of network clustering quantifying “cliques” 
or unusually high density of edges among subsets of three nodes, as 
one might expect in fraudulent behavior. 

The construction of the unipartite HHA network, the above network 
measures, and the BMIX is a distinct data wrangling activity from the 
construction of the outcome cohort, outcomes and non-network 
predictors. 

While the BMIX index has a readily interpretable scale from zero to 
one, the distributions of the others vary substantially with the number of 
nodes or agencies in the network. We scale all four network measures by 
their standard deviations to facilitate interpretation. 

2.3. Regression models of billing 

The Medicare home health claims from the Dartmouth Atlas are used 
to create HRR-year level per-enrollee expenditures in the fee-for-service 
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population. The primary outcome variable is the average price, infla
tion, and age-sex-race adjusted payment per patient for an HRR and year 
and BMIX from current or prior years is the key predictor. In regression 
models of per enrollee billing, we include the HRR/year mortality rates 
for the entire Medicare population as predictors to adjust for differences 
in the health needs of the population. We considered performing ana
lyses to determine what patient medical conditions were associated with 
the growth in home health care and adding these as case-mix controls, 
but were concerned about the potential reverse causality associated with 
comorbidity data given evidence that physicians coded patients inap
propriately with diseases such as diabetes in order to justify unneeded 
billings (Chuchmach and Ross, 2019). 

Our measures of home health care networks and other measures of 
utilization count only home health visits by residents of an HRR that 
occur at a HHA in that HRR. Each measure is constructed by year for 
each of the 306 HRRs from 2002 to 2016, leading to 4590 total HRR/ 
year observations. As a measure of fraudulent activity in the region, we 
also consider two other measures: (a) The regional growth in the number 
of HHAs per 1000 population relative to their 2002 frequency as a 
measure of profitability, and (b) whether the HRR was designated of 
interest to the DOJ, as noted above. 

We use conventional cross-sectional time-series regression analysis 
using inflation-adjusted dollar and log-dollar billing per Medicare 
enrollee under multiple model specifications. We also consider whether 
our set of network measures in 2002 predict home health care utilization 
or number of HHAs (per Medicare enrollee) in 2003–16 conditional on 
contemporaneous measures of these same indices. That is, in predicting 
(e.g.) 2012 home health billing in an HRR, we include both the 
contemporaneous 2012 BMIX measure, and the 2002 BMIX measure. 
Where appropriate, we cluster by HRR. 

Finally, we ask whether network measures (or other measures) in 
2002 could have predicted the subsequent growth in home health ex
penditures between 2002 and 09. Because network density and other 

measures are often related to the size of the network, we also include log 
of Medicare (fee-for-service) enrollees in the HRR and the number of 
“nodes” or agencies in the initial period 2002 as covariates to adjust for 
different HRR market sizes. As an effect-directionality test, we consider 
the reverse – did average home health billing in 2002 predict the change 
over time in the BMIX index from 2002 to 2009? Because a greater range 
of regions is conducive to more precisely estimating the effects of region- 
level network and other predictors on billing, we only report the results 
of regression models estimated on all regions. 

2.4. Peer effects and models, and HHA peer association analyses 

Peer-effects, also known as social influence or contagion, have been 
linked to the spread of fraudulent financial activities; e.g., Glaeser et al. 
(1996) has suggested that fraudulent financial strategies spread locally 
by learning from nearby criminals in a process consistent with 
peer-effects (also see Zenou, 2003). While we cannot establish causality, 
the presence of positive peer associations would suggest that the type of 
potentially fraudulent expenditures observed in home health expendi
tures may spread from agency-to-agency. 

Our 15-year series of longitudinal data allows us to consider whether 
peer effects in the prior year may independently predict agency behavior 
in the current year. Because an agency (hereafter the “ego”) may have 
multiple peer agencies, their combined influence on the ego can be 
quantified in a multitude of ways. In keeping with the premise for the 

network-level BMIX, we hypothesize that both the level of billing 
(outlying behavior) and an agencies degree or number of peers in their 
HRR network (reinforcement through multiple exposures) combine to 
impart influence. That is, being connected to more agencies will rein
force a willingness to bill more, given the same average billing, and 
exposure to multiple instances of high billing will have a greater impact 
than exposure to a single instance of high billing. 

Let Yijt denote the (single source) expenditures of agency i in HRR j in 
year t and the adjacency matrix of a HRR network of agencies by Ajt with 
mnth off-diagonal element Ajt,mn indicating whether agencies m and n of 
HRR j provided services to any of the same beneficiaries in year t. We 
define a weight matrix, Wjt to be the row stochastic version of Ajt 

meaning that the rows sum to 1, implemented by dividing the elements 
on a row by their row sum (the degree of agency i in HRR j and year t), 
denoted Dijt . The diagonal elements of Ajt and Wjt are both equal to 0, so 
that the billing for shared patients of agency i is limited only to services 
received outside the ith agency. The ith element of the product of Wjt 

and Yjt , Yijt = (WY)ijt , is the average billing of the agencies in HRR j with 
which agency i shares a network edge (O’Malley et al., 2020). 

To account for factors unrelated to peer effects at the HRR level that 
may vary over time, we adjust for HRR-wide average billing of agencies 
that are isolated nodes (they have no edges with any other agencies) in a 
given year, denoted IsoBillingj(t− 1). Because billing has a highly skewed 
distribution, we take the respective logs of ego agency billing, average 
peer agency billing, and HRR-wide average billing by isolate agencies. 
For all HHAs sharing at least one patient with another agency and at 
least one single-source patient, the general model of interest is:  

where β0t denotes year fixed-effects, β1 is the association of the ego’s 
prior year billing with its current billing, β2 measures the association of 
isolate home health billing (e.g., for those not sharing patients) averaged 
across the HRR in the prior year with its current billing; this is designed 

to capture HRR-specific trends in patient health needs. The three key 
coefficients are β3, the extent to which the number of peers of the agency 
(their network degree) is predictive of their billing (in the following 
year), β4, the extent to which the average billing across peer agencies is 
predictive of the agency’s own billing, and β5, the modification of the 
peer average billing association by the focal agency’s network degree. 
Finally, θj is a fixed-effect of the HRR to capture permanent differences 
in underlying health and other factors across HRRs and εijt is a within- 
HRR error term. We refrained from using models with peer-predictors 
from the current time-period as these would spuriously inflate the 
peer-effect due to agencies who share patients having also billed for 
those patients. 

We consider four basic variants of Equation (3); one that excludes the 
own-agency lagged billing (e.g., setting β1 = 0) and one that doesn’t, 
one that assumes the interaction effect is null (e.g., setting β5 = 0) and 
one that doesn’t. To the extent that own-agency lagged billing already 
captures past peer associations, including the lagged effect is likely to 
bias downward the true peer association, but doing so may also partially 
mitigate homophily (the tendency of HHAs with similar home health 
care billing to subsequently share patients). 

To guard against endogeneity from agencies that shared benefi
ciaries having their billing measure affected by the same patients, we 
restrict billing to the sample of beneficiaries that only receive care at a 
single agency (“single source” or degree 1 beneficiaries in the bipartite 
patient-HHA network). Such patients are the vast majority, reflecting 

log
(
Yijt

)
= β0t + β1 log

(
Yij(t− 1)

)
+ β2 log

(
IsoBillingj(t− 1)

)
+ β3 log

(
Dij(t− 1)

)
+ β4 log

(
(WY)ij(t− 1)

)
+ β5 log

(
Dij(t− 1)

)
log

(
(WY)ij(t− 1)

)
+ θj + εijt (3)   
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that the standard care is for patients to receive home health care from a 
single agency. The estimated peer-agency regression coefficient is thus 
informed only by patients that did not contribute to the formation of the 
network; the estimated coefficient is likely to be a conservative measure 
of potentially fraudulent strategies. To aid the interpretation and 
comparability of parameter estimates across specifications, the resulting 
outcome and the peer-agency predictors were standardized to have a 
mean of 0 and a standard deviation of 1 across the subset of the dataset 
for which the pre-standardized value of billing was positive (see Sup
plemental Appendix Section A.6 for interpretation of the interaction 
effect coefficients). We treated each ego agency as a random effect to 
account for clustering and their HRRs as fixed effects to restrict the 
identification of estimates of peer associations to variation within 
markets. In a sensitivity analysis, the model was re-estimated with 
random effects for HRR; results were similar. 

3. Results 

Table 1 presents summary statistics on home health care expendi
tures, for specific years 2002, 2009, and 2016, and network measures. 
We find a remarkable amount of regional variation across HRRs in home 
health billing; the coefficient of variation rose from 0.44 in 2002 to 0.69 
in 2009, before dropping to 0.49 in 2016. We further considered these 
summary statistics for DOJ-targeted HRRs, and those not targeted. For 
network measures, there is wide variability in the average value of the 
indices across regions, but the differences between the 21 DOJ-targeted 
and non-targeted HRRs are modest for network density and transitivity. 
Betweenness centrality is about one-third lower, and BMIX about one- 
half higher, in the 21 DOJ HRRs compared to the remaining 285 
HRRs. The largest differences between the DOJ and remaining HRRs are 
the number of HHAs (8 compared to 2.8 per 10,000 Medicare benefi
ciaries) and home health expenditures ($1152 compared to $479) in the 
DOJ-targeted HRRs compared to the non-DOJ regions. 

Fig. 3 shows graphically the distribution of BMIX by year using a box- 
and-whisker graph; it exhibits wide variability around a mean of 0.15 
with patient sharing rising through to the peak expenditures of 2009–10. 
Miami is a consistent extreme outlier (labeled); Fort Lauderdale, Las 

Vegas, Houston, and Los Angeles also had high rates of BMIX. 

3.1. The structure of patient-sharing BMIX networks 

Fig. 4 shows the Miami HRR networks in 2002 and 2009, while Fig. 5 
displays the patient-sharing network in Seattle (a low-growth region) 
during the same years. The 2009 Miami network presents just the most 
connected nodes with the number of displayed agencies equaling the 
total number of agencies in the 2002 network. The nodes are colored 
with red (most), blue and green (least) corresponding to the number of 
beneficiaries who only receive care from that agency. Miami illustrates a 
fundamental change in the degree of patient sharing – a shift from little 
patient sharing in 2002 (green nodes) to common sharing in 2009 (red 
nodes) during this period, but Seattle remains relatively stable. 

The association between the BMIX index and billing measures can be 
seen by sorting HRRs into deciles by their BMIX measure, either in 2002 
or in 2009. In Fig. 6, Panel A shows a modest positive association be
tween the 2002 BMIX index and 2002 home health expenditures per 
enrollee; the correlation becomes much stronger in 2009 (Panel B) 
particularly for the top BMIX decile. The 2002 BMIX index predicts the 
subsequent growth in home health billing between 2002 and 09 (Panel 
C) and the corresponding growth in the number of HHAs per 10,000 
enrollees (Panel D). While most of the agency growth and expenditure 
growth is associated with the regions corresponding to the top decile of 
the BMIX index, there appears to be a broader association between BMIX 
and home health expenditures across all deciles, particularly in 2009. 

3.2. Billing regressions 

In the regression models in Table 2A, home health care expenditure 
is regressed on multiple predictors, including the network measures. As 
noted above, each of the four network measures (starred) has a standard 
deviation of 1.0 and a mean of zero; the interpretation of each of these 
coefficients is the change in the dependent variable with respect to a 
one-standard-deviation change in the independent variable. 

The first two columns are least squares regressions both unweighted 
and weighted by the number of Medicare enrollees; all regressions 
include controls for year and level of mortality and are clustered by 
HRR. In the first column, a one-standard-deviation increase in BMIX is 
predicted to increase home health care billing by $173, or 33 percent of 

Table 1 
Summary statistics.   

(1) (2) (3) 

Full 
sample 

DOJ Targeted HRRs 
(N = 21) 

Other HRRs (N =
285) 

Home Health 
Expenditures 

525.08 1152.27 478.87 
(332.6) (512.0) (261.5) 

Home Health Exp.: 
2002 

378.84 671.18 357.30 
(166.4) (192.1) (142.4) 

Home Health Exp.: 
2009 

642.00 1578.82 572.97 
(444.1) (676.8) (329.6) 

Home Health Exp.: 
2016 

534.16 983.00 501.09 
(263.7) (249.9) (232.6) 

BMIX 0.15 0.22 0.14 
(0.0749) (0.115) (0.0676) 

No. of Agencies/ 
10,000 

3.20 8.03 2.85 
(3.119) (7.210) (2.186) 

Network Density 0.34 0.30 0.34 
(0.236) (0.243) (0.235) 

Betweenness 
Centrality 

0.22 0.15 0.22 
(0.175) (0.115) (0.177) 

Network Transitivity 0.54 0.48 0.54 
(0.234) (0.230) (0.234) 

Mortality (per 1000) 4.98 5.19 4.96 
(0.579) (0.698) (0.566) 

FFS Medicare 
Population 

93.59 135.71 90.49 
(87.69) (154.2) (79.81) 

Observations 4590 315 4275 

Measured at the HRR/Year level. Standard deviations in parentheses. FFS De
notes “Fee for Service.” 

Fig. 3. Box and Whisker Plots of the BMIX Index by HRR and by Year, 2002–16. 
The shaded bar represents the interquartile range (25th to 75th percentile) with 
the median marked by the horizontal bar. The “whiskers” are the 95th 
percentile with individual dots as outliers. Miami appears as an outlier in 
multiple years (as labeled). In 2010, the HRRs with the 5 highest BMIX mea
sures were Miami (0.65), Las Vegas (0.43), Fort Lauderdale (0.40), Houston 
(0.39), and Los Angeles (0.37). 
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average home health billing; other network measure coefficients are 
smaller in magnitude or negative. 

One can construct theories for why the other network measures 
would exhibit negative rather than positive associations. For example, 
higher transitivity could be an indication of greater coordination of 
unnecessary beneficiary sharing among “like” agencies (perhaps those 

owned centrally) within a region. Greater centralization might be akin 
to a hub and spoke network whereby one agency dominates patient 
sharing such that it “polices” the others and thus guards against fraud
ulent activity. 

A higher mortality rate is associated with higher home health billing; 
a one-standard deviation increase is predicted to increase home health 
billing by $118 (the coefficient, $203.7, times the standard deviation, 
from Table 1); weighted regression coefficients are similar. The Column 
4 model, for years 2003–16, includes both contemporaneous and 2002 
levels of (standardized) network measures. Once again, BMIX enters 

Fig. 4. Network plots for the Miami HRR (Panel A: 2002, Panel B: 2009). The 
2009 plot is restricted to the most connected agencies of number equal to the 
total number of agencies in 2002. The nodes are colored with red (most), blue 
and green (least) corresponding to the number of beneficiaries who only receive 
care from that agency. 

Fig. 5. Network plots for the Seattle HRR (Panel A: 2002, Panel B: 2009). The 
nodes are colored with red (most), blue and green (least) corresponding to the 
number of beneficiaries who only receive care from that agency. 
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significantly, with a slightly larger coefficient for the 2002 value relative 
to the contemporaneous BMIX measure; their combined impact, corre
sponding to a permanent increase in BMIX during the entire period 

(196.5 = 86.4 + 110.1), is larger than the coefficient in column 1. In the 
HRR-fixed-effects models (column 5), the association between BMIX and 
billing is much diminished, suggesting that billing does not track year- 

Fig. 6. Home Health Care Expenditures in 2002 and 2009 and the Change in the Number of HHAs per 10,000 Medicare Enrollees, by Decile of the BMIX Index. Each 
decile corresponds to approximately 31 HRRs ranked in order of their BMIX index. 

Table 2A 
Regressions explaining home health expenditures.   

OLS OLS (Weighted) OLS (Log) OLS (2003–16) Fixed Effect Fixed Effect (Log) 

BMIX* 173.2 164.1 0.308 86.42 31.59 0.0619 
(6.59) (5.67) (10.42) (3.20) (1.79) (4.08) 

Network Density* 10.37 36.71 0.0491 − 53.59 − 18.15 − 0.0138 
(0.77) (2.27) (1.63) (-2.98) (-2.47) (-1.18) 

Betweenness Centrality* − 34.87 − 58.89 − 0.00555 − 41.15 − 12.29 − 0.0108 
(-3.54) (-4.07) (-0.27) (-4.49) (-3.71) (-2.22) 

Network Transitivity* − 58.43 − 127.3 − 0.0499 − 60.21 − 17.47 − 0.0206 
(-4.42) (-4.64) (-2.48) (-4.70) (-3.89) (-3.71) 

Mortality (per 1000) 203.7 165.9 0.387 213.1 25.17 0.0400 
(8.03) (6.76) (9.42) (8.17) (1.32) (1.69) 

N of Agencies in 2002 1.795 0.115 0.0703 1.509   
(2.43) (0.17) (1.36) (1.63)   

N Enrollees 2002 (1000) − 1.192 − 0.512 − 0.161 − 1.278   
(-4.09) (-2.29) (-3.34) (-4.42)   

BMIX in 2002*    110.1      
(4.21)   

Density in 2002*    64.54      
(3.60)   

Betweenness in 2002*    25.98      
(1.96)   

Transitivity in 2002*    15.66      
(1.02)   

Constant − 607.5 − 442.4 4.318 − 357.3 250.8 5.644 
(-4.00) (-3.07) (14.73) (-2.89) (2.40) (43.17) 

Observations 4496 4496 4496 4149 4496 4496 
R2 0.429 0.495 0.471 0.486 0.893 0.943 

t statistics in parentheses. All regressions include year fixed-effects. 
* Denotes z-score (standard deviation = 1). Clustered at the HRR level. 
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to-year with BMIX (or any of the other variables); we consider longer- 
term growth in home health care billing below in Table 2B. The re
sults for the corresponding regressions of log of home health care billing 
tell a similar story with a one-standard deviation rise in BMIX predicted 
to increase log home health billing by nearly one third (column 3), with 
much smaller predicted effects in the HRR fixed effects model (column 
6); however, the estimated coefficient of BMIX (0.0619) remains sta
tistically significant (z-score >4). (See Supplemental Appendix Section 
A.7 and Tables A2 and A3 for sensitivity analysis using log billing 
regression models and the number of HHAs as dependent variables.) 

Table 2B provides estimates of changes in home health expenditure 
between 2002 and 2009; except for the corresponding change in mor
tality during the same period (to adjust for changes over time in un
derlying health), we used only information known in 2002. Column 1 
shows that the BMIX in 2002 is strongly predictive of growth, with a one- 
standard-deviation difference predicting $180 more rapid growth (or 68 
percent of the average increase between 2002 and 2009), but with 
smaller effects ($85, or 32 percent of average growth) when lagged 
home health billing from 2002 is included in the regression (column 2). 
With logged home health billing changes (column 3), the coefficient on 
BMIX is 0.088 (or 20 percent of the log change) with the 2002 dependent 
variables included. The reverse association does not hold; a regression of 
the change in the BMIX between 2009 and 2002 on the initial level of 
home health billing in 2002 shows a negative (and barely significant) 
correlation. Finally, Table 2B shows in a linear probability model that 
the likelihood that a given HRR would be designated one of the 21 
strike-force HRRs increases by 8.6 percent when the BMIX is one stan
dard deviation higher. 

3.3. Peer association analyses 

The results of the peer-associated analyses are based on 1.54 million 
shared home health care patients across HHAs in the 306 HRRs 

(Table 3). We find the specifications with the interaction between 
average peer billing and number of peer agencies (i.e., degree) included 
yield superior fits than when this is excluded; the marginal R2 (the 
agency random effects are in the error-term as opposed to the model fit) 
demonstrates an advantage of including the interaction term. 

In the absence of the interaction, the dominant network-related 
node-level predictor is lagged log degree; in the model without lagged 
ego billing (e.g., the lagged dependent variable) the estimated coeffi
cient is 0.327 (standard error 0.002) and in the model with lagged ego 
billing the estimated coefficient is 0.029 (standard error 0.003). In both 
models, lagged log peer average billing is statistically non-significant. 
We believe that these estimates likely bracket the true peer associa
tion; the former is likely biased upward because of homophily or un
measured common causes acting contemporaneously across an HRR, 
while the latter is likely biased downward because the billing measure 
does not capture the dynamics by which peer associations in past years 
are already reflected in year t − 1 ego billing measures. 

With the addition of the interaction between average home health 
billing and network degree (number of peer agencies), the overall 
impact of lagged log peer average billing amplifies; in the model without 
lagged ego billing the main and interaction estimated coefficients are 
0.036 (0.003) and 0.036 (0.002), respectively, and in the model with 
lagged ego billing they are 0.021 (0.004) and 0.009 (0.002). Considering 
the interaction terms in Column 4, the model predicts that when average 
logged billing is at the 90th percentile (1.28 standard-deviations above 
the mean), the association between a one-standard deviation increase in 
the logged number of peers and subsequent log billing by the ego is 
0.033; the corresponding estimate for a one-standard-deviation increase 
in logged average billing at the 90th percentile for logged number of 
peers is 0.030. Finally, the prediction associated with a simultaneous 
increase in logged average billing and logged average number of peers 
from their means to their 90th percentiles is 0.065, a combination of 
results that parallels those for the diffusion of a medical procedure in 
O’Malley et al. (2020). 

In sum, we have established that even within HRRs, HHAs sharing 
patients with a greater number of other agencies or with high-billing 
other agencies were more likely to increase patient expenditures in 
the following year. We also explored extending the model in Equation 
(3) to allow the peer-associations to be modified by the lagged BMIX of 

Table 2B 
Regressions explaining the change (2002–2009) in home health care expendi
tures and the probability of DOJ targeted HRRs.   

Home 
Health 

Home 
Health 

Log Home 
Health 

DOJ Targeted 
HRRs 

BMIX in 2002* 180.5 85.33 0.0883 0.0862 
(8.24) (3.92) (3.23) (4.68) 

Density in 2002* − 3.691 − 9.711 0.0350 0.0288 
(-0.16) (-0.49) (1.15) (1.52) 

Betweenness in 
2002* 

16.36 0.605 0.0275 0.0181 
(0.86) (0.04) (1.24) (1.13) 

Transitivity in 
2002* 

10.29 11.04 0.0390 − 0.00718 
(0.44) (0.54) (1.49) (-0.37) 

Mort. Change 
2002–09 

208.2 164.2 0.217 0.0141 
(3.95) (3.53) (3.65) (0.32) 

N of Agencies in 
2002 

2.973 2.079  0.00386 
(2.62) (2.08)  (4.05) 

N Enrollees 2002 
(1000) 

− 1.680 − 1.231  − 0.000897 
(-5.77) (-4.74)  (-3.66) 

Home Health 2002  0.939    
(9.39)   

Log N of Agencies 
2002   

0.156    
(3.34)  

Log N Enrollees 
2002   

− 0.182    
(-4.80)  

Log Home Health 
2002   

− 0.0128    
(-0.26)  

Constant 469.4 67.83 0.990 0.0772 
(12.05) (1.24) (3.11) (2.36) 

Observations 300 300 300 300 
r2 0.310 0.470 0.181 0.217 

t statistics in parentheses. The Strike Force regression (final column) is a linear 
probability model, where the dependent variable is 1 if the region became a DOJ 
targeted HRR. 

* Denotes z-score (standard deviation = 1). 

Table 3 
Peer-agency associations of log-peer home health billing with log ego billing.   

Model (1) Model (2) Model (3) Model (4) 

Average Linked 
Home Health 
Billing 

− 0.004 
(.002) 

0.003 
(.003) 

0.036*** 
(.003) 

0.021** 
(.004) 

Number of Peers 0.327*** 
(.002) 

0.029*** 
(.003) 

0.332*** 
(.002) 

0.018*** 
(.004) 

Average Linked 
Home * 
Number of Peers   

0.036*** 
(.002) 

0.009*** 
(.002) 

Lagged HRR Isolate 
Home Health 
Billing 

0.233*** 
(.004) 

0.160*** 
(.003) 

0.210*** 
(.004) 

0.154*** 
(.004) 

Lagged Ego Home 
Health Billing  

0.608*** 
(.003)  

0.607*** 
(.003) 

R2 0.536 0.738 0.538 0.738 
Bayesian Information 

Criterion (BIC) 
159,540 123,133 159,193 123,114 

All models include HRR fixed-effects and home health care agency (HHA) 
random-effects and are estimated on N = 126,749 agency-by-year observations 
involving 14,326 distinct agencies across the 306 HRRs. The R2 measure is 
computed with the random-effects for agency being part of the error-term; this 
quantity is often referred to as marginal R2 for a mixed-effect model. We also use 
the Bayesian Information Criterion (BIC) to compare the fitted models. Smaller 
values of the BIC represent superior model fit. However, because the BIC in
creases with the sample-size, it only makes sense to make comparisons within 
models (1) and (3) and within models (2) and (4). 
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the HRR. While not reported, we found that in HRRs with a higher BMIX, 
the peer association coefficients were smaller in magnitude, suggesting 
diminishing returns to additional information about agencies with 
which the ego agency shares patients. 

4. Conclusions 

It is well established that there are wide geographic variations in the 
diffusion of highly effective health care (Coleman et al., 1966; Jencks 
et al., 2003; Skinner and Staiger, 2015) and newly developed cancer 
drugs (Agha and Molitor, 2018); however, much less is known about the 
network-based diffusion of ineffective or potentially harmful use of 
potentially fraudulent health care (Villalonga-Olives and Kawachi, 
2017). In this paper, we have studied a rapid increase in billing for 
Medicare home health care expenditures in some regions of the U.S. 
during the 2000s. These billing increases cannot be explained by 
changing health needs, nor can they be explained by the substitution of 
inpatient for home health care. Instead, they appear largely the conse
quence of widespread fraudulent behavior which in turn attracted spe
cific DOJ strike-force offices located in areas with rapid increases in 
fraudulent behavior. 

Guided by a theoretical model of fraudulent billing in which the 
potential gains from such activity outweigh penalties of legal convic
tions, we developed a novel bipartite mixture network index, the BMIX. 
The crucial information-based features of the BMIX are that, unlike 
commonly used unipartite network measures, it retains knowledge of 
the number of patients shared between exactly two versus a wider set of 
agencies, as well as reflecting the fraction of beneficiaries whose care is 
solely provided by a single agency. 

The BMIX index varied widely across regions and was strongly 
associated with per-enrollee home health care expenditures. Commonly 
used unipartite network measures such as density, betweenness- 
centralization, and transitivity were much less predictive of this rapid 
increase in home health billing. Notably the 2002 BMIX, measured at the 
outset of the sharp rise in home health care billing, was predictive of the 
growth in subsequent home health care expenditures for the period 
2003–09 and was a strong predictor of the subsequent growth in the 
number of HHAs, and whether the region would attract a DOJ strike 
force office. The reverse did not hold; higher 2002 billing predicted 
slightly lower BMIX growth. Finally, we found evidence of peer associ
ations within HRRs; HHAs sharing patients with multiple high-billing 
agencies were more likely to experience higher expenditures in the 
following year. The coefficient estimates are consistent with provider 
communication that, similar to Barnett et al. (2012) and O’Malley et al. 
(2020), occurs through the sharing of patients across agencies. In sum, 
our results suggest an important role for market bipartite network 
structure in the diffusion of fraudulent behavior. 

Our study focuses on what is now a historical period of particularly 
high rates of home health billing, but new approaches to Medicare fraud 
have continued to undergo Darwinian evolution with novel schemes. 
For example, in July 2022 the Department of Justice brought charges of 
$1.2 billion in fraudulent Medicare billing arising from a variety of 
approaches, including one in which “telemedicine companies found 
medical professionals” to prescribe “expensive genetic tests and durable 
medical equipment regardless of whether the patients needed them ….” 
(DOJ, 2022). We hypothesize that the use of a bipartite network struc
ture for these schemes – or perhaps for schemes not yet discovered – can 
provide valuable predictive signals to federal agencies, because the 
sharing of patients (or patient identification) is a common feature of 
fraudulent medical billing. Identifying such activities early allows tar
geted pre-emptive auditing, which has been shown to provide large 
savings arising from deterrent effects among all providers, and not just 
those directly accused (Leder-Luis, 2020; Shi, 2022). That patient 
encounter data already exists, and is available with just a few months 
lag, makes the calculation of such bipartite network measures an 
attainable task at modest cost. 

A second advantage of our network measures is that those commit
ting fraud will have little idea of the extent to which the network makes 
them stand out because any one agency sees only what they do, not what 
other HHAs are doing. Therefore, networks may provide a covert 
monitor of provider behavior, at the level of an entire industry, across 
time. This may be a particularly helpful device to capturing general 
changes in patterns of care in close to real-time, and further allows us to 
measure how industry patterns change and which agencies or practices 
stand out. 

We acknowledge three limitations of the analysis. The first is that we 
cannot measure fraud directly because agencies are understandably 
reticent about their potentially illegal behavior. Because those success
fully charged are only the tip of the iceberg, most fraudulent activities 
are difficult to detect; we recognize that some of the three-fold increase 
in home health billing in Miami between 2002 and 2009 could have 
been legitimate. An organization with access to a database of confirmed 
cases (e.g., CMS) does not face this limitation; methods developed here 
could help identify areas where outbreaks of fraud appear the most 
likely. 

Second, while we established that the BMIX index is theoretically 
consistent with a model of diffusion and is predictive of subsequent 
growth in home health expenditures, we cannot prove causality in these 
nor in the peer-effect analyses (O’Malley et al., 2014). The BMIX index is 
not likely to be capturing unmeasured health effects – it is uncorrelated 
with mortality – but patient sharing patterns could be symptomatic of 
past or current fraudulent activity which in turn lays the groundwork for 
future fraudulent behavior. For example, Florida may experience 
permanently higher levels of fraud because of “corporate practice of 
medicine” laws that allow for HHAs to be owned by entrepreneurial 
non-clinicians (Health Law Firm Blog, 2012). State-level regulations also 
influence the ability of entrepreneurial physicians to form and profit 
from their own businesses (Welk, 2003). 

Third, we cannot guarantee that the BMIX measure will continue to 
predict Medicare fraud as it evolves into schemes involving telemedi
cine, for example. While we believe that any rapid and clinically un
justified increase in billing will involve multiple providers relying on the 
same patient identification numbers (and thus triggering an elevated 
BMIX), we acknowledge that further research is necessary using more 
recent data. 

Despite these limitations, the BMIX index has shown promise in 
predicting future excessive billing behavior for HHAs, suggesting its 
value for machine-learning approaches to unearthing Medicare fraud in 
HHAs and elsewhere (Bauder et al., 2017). Furthermore, the govern
ment may have access to records of past occurrences of fraud that could 
be used to train a predictive machine-learning model to make optimal 
BMIX-based predictions. We also recognize that other bipartite measures 
(e.g., Opsahl, 2013; Opsahl et al., 2010) which are distinct from BMIX 
may also predict diffusion and should be considered in future research. 

There are a variety of other applications for bipartite network mea
sures that can potentially capture models of diffusion and infection. For 
example, patterns of staff-sharing across nursing homes leading to rapid 
diffusion of COVID-19 infections among nursing home patients (Chen 
et al., 2020). Network analysis may also be used to test whether fraud 
more generally is “contagious” beyond financial settings (Dimmock 
et al., 2018). For example, Howard and Desai (2020) document hospitals 
(or hospital systems) accused of providing unnecessary stents (percu
taneous coronary interventions) for their patients. Of the 16 systems in 
their study, 10 were in just 4 states: Pennsylvania, Maryland, Ohio, and 
Kentucky, a finding consistent with networks of interventional cardiol
ogists within and across hospital systems. While future research is 
needed to test whether measures such as the BMIX can predict diffusion 
in other settings, we believe there is a strong basis for the use of network 
analysis in the analysis of health care fraud and market dynamics. 
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